
Windows CodeBackÔ
Version 1.03

User's Manual

Copyright (c) 1992-93 Leslie Pusztai Jr.

Table of Contents

µ0. Notes..1

1. Overview...1

What is WCB..1
Hardware and Software Requirements.......................................2
Installation..2
A Quick Start with WCB..2

2. File Formats..3

Export List File Format (.EXL)..4
Output List File Format (.LST)..5
VxD Service List File Format (.VSL)..7

3. WCB switches...8

4. Regions..11

5. The Code Analyzer..13

More on Passes...14
What about WinMain and LibMain..15

6. Error Messages...16

7. Example Projects...20

8. Recommended Reading...21

WINDOWS CODEBACK

1

0. Notes
· This is the second release of my disassembling software previously called

Windows Disassembler - now Windows CodeBack. Since the last release I
partially rewrote the main disassembling routine, so WCB now gives greater
accuracy. The main routine is not the only thing that was changed. WCB now
disassembles VxDs differently than previous release: now all addresses are
linear addresses instead of the object:offset style. (Notice, that this applies only
to 32 bit segments.) If you are interested in other changes, please read the
documentation, and try what do you want! Another good news: you can reach
me on e-mail at pusztail@tigris.klte.hu or pusztail@dragon.klte.hu.

· All names mentioned through this document are registered trademarks or
trademarks of their respective holders.

· I would like to say thanks to all people who helped me during the development
of WCB, especially to Endre Csató for impressive testing and for good
advices, to Árpád Csoma for suggesting the -S option, to Károly Kecskeméti
for giving the CodeBack name when I saw a program called Windows
Disassembler too on an FTP site, and to László Kôvári for putting the previous
version onto all BBSs that he could reach (I hope he will do it with this
version too).

1. Overview

What is WCB

Windows CodeBack (WCB) is a disassembler designed exclusively for Microsoft
Windows applications. It can disassemble New Executable format files (such
as .EXEs, .DLLs, .DRVs, etc.), Linear Executables (.386s and .VXDs) and can
extract LE files bounded into W3 files (such as WIN386.EXE). The current
version does not include support for conventional DOS .EXE files, OS/2 2.x LX,
and Win32 PE files, but you can disassemble OS/2 NE files too (Notice, that if
you want to disassemble OS/2 NE files, you need an export list for the
DOSCALLS module, so please generate one before disassembling. More on
generating export lists later.)

After you start it, WCB gathers and shows information about the program's en-

WINDOWS DISASSEMBLER

try point, main procedure, device descriptor block. Shows by name all Windows
API functions that an application call and all the virtual device driver calls that a
VxD makes. Labels the exported functions in a program and the control procedures
and services in a VxD. Identifies by name and labels the WinMain and LibMain
functions. Uses CodeView symbols, such as those shipped with the debugging
version of Windows.

Hardware and Software Requirements

In order to run WCB you will need at least a 386 based machine with DOS 3.0 or
above installed on the system, an XMS memory manager such as HIMEM.SYS
(the XMS version it provides must be 2.0 or higher.) And it is not bad if you have
a plenty of free hard disk space (from giant applications such as WinWord WCB
may create a 20-30 MB list file!).

The total amount of memory WCB need depends on the largest segment's and
overall size of the program to be disassembled. For example in the case of
WinWord about 250k conventional and 200k XMS needed; in the case of the
debug version WIN386.386 (embedded into WIN386.EXE) 260k conventional and
about 150k XMS will be sufficient (if you use the code analyzer, some more
memory needed).

Installation

There is a very simple installation tool provided in the registered WCB package.
This is the INSTALL.BAT file that you can find on the WCB diskette. So if you
want to install WCB, make the drive containing the WCB distribution diskette the
active drive (by typing A: for example), and start the install program by typing IN-
STALL. If you don't want to install WCB into the default C:\WCB directory, you
may specify the desired path on the INSTALL command line, for example by
typing INSTALL D:\WCB. After a little disk crackling you will get the Windows
CodeBack installed on your system, and it's ready to play with.

A Quick Start with WCB

You can start WCB on the DOS command line by typing:

WCB [options] module [listfile]

or

WCB @respfile if you want to use a response file.

WCB searches for the given module with the following extensions if you did not
give one: .EXE, .DLL, .DRV, .VXD, .386. When you generate a disassembled list
from a module, the name of the listfile (if you didn't specify one) is the name of
the module file with the extension .LST. If you specify the listfile name but no
extension, then the extension will be .LST. When you are generating an export list
file, all is similar to the previous case, but the default extension will be .EXL.

Options can be preceded either with '-' or '/', but notice, that the option letters
are case sensitive. You can place options anywhere on the command line, for
example:

wcb -c test
wcb -s2 test -c
wcb test -c test.lst -r
wcb test -c -r

are all valid.

If you don't like tinkering with the command line, you can use a response file. This
file contains the WCB command line, each piece separated by at least one space or
a new line character as you can see in the following example (contents of EXAM-
PLES\VMD\VMD.WCB). The default extension for the response file is .WCB.

\windev\vmd\vmd.386
-c
-y
-r

2. File Formats
WCB uses several types of text files. These are the following:

Export Lists (.EXL)
Output List (.LST)

WINDOWS DISASSEMBLER

VxD Service List (.VSL)
Region Definition File (.RGD)

The region definition file format is documented in the '4. Regions' section, and the
others here.

Export List File Format (.EXL)

The format of the export list file is the following:

<module name>
[<ordinal> <function name>] ...

where

<module name> is the name of the module the .EXL file belongs
to.

<ordinal> is the ordinal number
of the exported function.

<function name> is the name of the exported function.

You can generate an export list from a module with the -x switch. And now a few
words about the customization of .EXL files. WCB searches for .EXL files at first
in the current directory then in the WCB directory, so you can make your own ver -
sion of an export list file, place it in your working directory, and start WCB: it will
read your customized file rather than the one can be found in the WCB directory.

The following is an example that illustrates how the pervious things look like
in reality (the contents of LZEXPAND.EXL provided with WCB):

LZEXPAND
 1 LZCOPY
 2 LZOPENFILE
 3 LZINIT
 4 LZSEEK
 5 LZREAD
 6 LZCLOSE
 7 LZSTART
 8 COPYLZFILE
 9 LZDONE

 10 GETEXPANDEDNAME
 11 WEP
 12 ___EXPORTEDSTUB

Output List File Format (.LST)

The .LST file is the default listing file generated from a module (unless you used -
x switch). There are three main sections and several subsections in an .LST file, as
you can see in the following examples.

Example 1 (from EXAMPLES\TEST\TEST.LST)

Filename: TEST.EXE Ü This is the header section.
 Use -nh to suppress.
Type: Segmented executable
Module description: Windows Startup Test
Module name: TEST

Imported modules: Ü The imported modules section.
 1: KERNEL Use -ni to suppress.
 2: USER

Exported names by location: Ü The exported names section.
 1:0130 1 WNDPROC Use -ne to suppress.

Program entry point: 1:0000 Ü Entry point info block.
WinMain: 1:0050 Use -np to suppress.

-- Segment: 1 -- Type: 16 bit ------------------------
:
:

Example 2 (from EXAMPLES\VMD\VMD.LST)

Filename: VMD.386 Ü This is the header.
Type: 386 enhanced mode virtual...
 ...device driver
Module description: Win386 VMD Device (Version 3.0)

WINDOWS DISASSEMBLER

Module name: VMD

Imported modules: Ü The imported modules.

Exported names by location: Ü The exported names.
00000AA4 1 VMD_DDB

Segment names: Ü This is the segment names
 1: _LGROUP section. Use -nn to suppress.
 2: _IGROUP

Symbols by location: Ü This is the symbol list.
00000000 Int33_Create_VM Use -ny to suppress.
:
00000200 I33_Soft_Init_INI

Program entry point: 3:0000 Ü This is the DDB info block.
Device descriptor: 00000AA4 Use -np to suppress.
Device number: 000C
Device version: 03.00 (3.0)
Init order: 34000000
Control procedure: 0000064C
V86 API procedure: 00000826
PM API procedure: 00000826
V86 API entry CS:IP: N/A
PM API entry CS:IP: N/A
Service table: 00000A98
Number of services: 00000003 (3)

-- Segment: 1 -- Type: 32 bit -- Name: _LGROUP -------
:
:

The first is the header section, which contains information about the file name and
type, module name and description. The second is the information section that in-
forms you about the imported modules, exported names, program entry point,
WinMain/LibMain and in the case of VxDs the device descriptor block.

The third is the core of an .LST file. This is the disassembled (and if you
specify the -d switch the dumped) list of segments - or objects if you are
disassembling a linear executable. (For simplicity I will refer to objects as

segments in the following.) If you use the -S switch, only the first two sections
will appear in the .LST file; the segment lists will be placed into .xxx files, where
xxx is the zero padded number of the segment. In the list each segment's header
contains some more information: the number of the segment, type of the segment
(whether it is 16 or 32 bit), and segment name (if present in the .SYM file).

After the header begins the disassembled list of the segment. There is some
extra information in this list along with pure assembly language instructions. This
extra info appears in a form of comments. There is a comment in the list
everywhere an exported function, control procedure or service routine begins, but
this is self-explanatory. There is an other comment type that I will discuss shortly
in the following. If you encounter a comment Reloc => <relocname> in the
disassembled list, it means that the segment's relocation table contains a reference
to the following address with the name <relocname>. If the <relocname> is a
function name it means that there is code at that address, so the code analyzer
made some trash; but if the name is a variable name (like
KERNEL.__WINFLAGS), then all is in order.

Another strange thing you might encounter in the listing file is a ? in the place
of the instruction's mnemonic. This little ? appears when the disassembler finds an
invalid opcode (that is not specified in the i486 Programmer's Reference). Almost
always it means that there is data rather than code, but there are exceptions. One of
them is the 0fh 0ffh sequence, which the Windows 3.1 kernel uses to switch from
one protected mode ring to another.

VxD Service List File Format (.VSL)

Files of this type are used to replace the ugly numbers in a VxD call with more
meaningful function names. WCB can't generate this type of file, so you must pro-
vide it manually or use the default file included in the WCB package. Every time
you start WCB it reads the standard .VSL file called DEFAULT.VSL, which you
can find in the WCB directory. You may replace this default file: make the neces-
sary changes and use the -l switch to specify the new location of the file. The
format of a .VSL file is very simple:

[<service number> <service name>] ...

where

<service number> is the 8 digit hexadecimal number of the service.
 <service name> is the name of the service.

WINDOWS DISASSEMBLER

The following is a snippet from the DEFAULT.VSL file, that illustrates the VxD
service list file format:

:
00010079 _Free_LDT_Selector
0001007A _BuildDescriptorDWORDs
0001007B _GetDescriptor
0001007C _SetDescriptor
0001007D _MMGR_Toggle_HMA
0001007E Get_Fault_Hook_Addrs
0001007F Hook_V86_Fault
00010080 Hook_PM_Fault
00010081 Hook_VMM_Fault
00010082 Begin_Nest_V86_Exec
00010083 Begin_Nest_Exec
00010084 Exec_Int
00010085 Resume_Exec
00010086 End_Nest_Exec
:

3. WCB switches
The following is the alphabetical list of the currently available WCB options and
switches. Note, that some of them (-oyl, -oyn, -t, -v, -y, -l) are available in regis-
tered version only. For more about registering WCB see 'REGISTER.DOC' file.

-c If you use this switch, a code analyzer will be used to separate code from
data rather than to decide on a code segment/data segment basis. See '5.
The Code Analyzer' and '4. Regions' for more on this topic.

-d Use this switch if you want to dump all segments after disassembling.

-D With this switch you can force WCB to treat data segments as if they were
code during the code analyzing process; so then WCB will accept
references for code pieces in data segments too. Note that this switch takes
effect only if you use the code analyzer (switch -c).

-en With this option you can specify the ending segment of the disassembling
process. If you use both -e and -s, and the ending segment number is less
than starting, WCB will not process any segments.

-lxxx By default a file named DEFAULT.VSL is used to retrieve the names of
VxD services. If you want to use your customized version of this file, use
this option to tell WCB where to look for it.

-L This switch tells WCB to display a license agreement screen.

-ne This switch suppresses the list of the module's exported names. See '2.
File Formats' for more about listing files.

-nh This switch suppresses the header information in the listing file. See '2.
File Formats' for more about listing files.

-ni This switch suppresses the list of imported modules in the listing file. See
'2. File Formats' for more about listing files.

-nm By default in a listfile a reference to a Windows API function appears in
MODULE.FUNCTION format (like KERNEL.MAKEPROCIN-
STANCE). If you use this switch, the module names and the '.' will be
stripped from these references (so from KERNEL.MAKEPROCIN-
STANCE will be simply MAKEPROCINSTANCE). See '2. File Formats'
for more information on listing files.

-nn If you are using a symbol file, and the .SYM file contains symbols for seg-
ment names, this switch causes that these names won't appear in the infor-
mation section of the listing file. See '2. File Formats' for more about
listing files.

-np If you use this switch with Segmented (or New) Executables, addresses of
the entry point and WinMain or LibMain will not appear in the listing file.
With 386 enhanced mode virtual drivers, the effect is similar to the
previous case: there will be no Device Descriptor info block in the listing.
See '2. File Formats' for more information about listing files.

-nw This switch tells WCB, that don't search for the WinMain/LibMain func-
tions. This is a useful switch if you have a non-standard executable or li-
brary, that have no conventional startup code module and main procedure

WINDOWS DISASSEMBLER

pair.

-ny This switch suppresses the list of symbols that came from the .SYM file.
See '2. File Formats' for more about listing files.

-ol If you use this switch, the names in the export list will be sorted by their
location.

-on If you use this switch, the names in the export list will be sorted by export
name. This is the default case when you disassemble a module.

-oo If you use this switch, the names in the export list will be sorted by ordinal
number. This is the default case when you generate export list from a mod-
ule with the -x switch.

-oyl If you use this switch, the names in the symbol list will be sorted by loca-
tion. Note, that this option (and the following one) is available in regis-
tered version only.

-oyn If you use this switch, the names in the symbol list will be sorted by name.
This is the default state of the -oy switch, and is included only for
completeness.

-pn This option specifies the number of disassembling passes. The minimum is
2, the maximum is 9, and the default value is 3. See '5. The Code
Analyzer' for more on passes.

-rxxx Specifies the name of the optional region definition file. If you do not
specify the file name (that is only -r used), the module file name will be
used with the extension .RGD. See '4. Regions' for more information on
regions and region definition files.

-sn With this option you can specify the starting segment of the disassembling
process. If you use both -e and -s, and the ending segment number is less
than starting, WCB will not process any segments.

-S By default the disassembled lists of all segments will be placed into one
listing file. With this switch you can tell WCB to place each segment list
in a separated file. In this case the .LST file contains only the information
block of the listing file, and segment listings are placed into .xxx files,

where xxx is the number of the current segment. If you disassemble large
files with many segments (like WinWord or CorelDraw) this switch is
highly recommended. Note that you can use this switch with programs that
has maximum 999 segments, but the maximum number of segments is 254
in the case of New Executables and 3 if you have a virtual device driver,
so it's only a theoretical limit. See '2. File Formats' for more about listing
files.

-t If you use this switch, WCB lists all the VxDs that can be found in a W3
file (like WIN386.EXE) rather than disassembling.

-vxxx If you want to disassemble a VxD that can be found in a W3 file (like
WIN386.EXE), you must specify the VxD name with this option.

-yxxx This option can be used to specify the optional symbol file name. If you do
not specify file name (that is you use -y) then the module file name will be
used with the extension .SYM. The symbol file contains additional
symbolic and segment names that eases the interpreting of disassembled
code. .SYM files generated with Microsoft's MAPSYM or Borland's
TMAPSYM can be used. If the given file is not a valid .SYM file, the
program may crash, because a .SYM file doesn't contain a signature, so
WCB can't decide that it is valid or not. Note that this option is available
only in the registered version.

-x This switch tells WCB to produce export list (.EXL) rather than a listing
(.LST) file. See '2. File Formats' for more about listing and export list
files.

4. Regions
A region is a contiguous area of code or data. The size of a region can range from a
single byte to a full segment. Separating the disassembled list into regions may
significantly ease the interpreting process. There are three ways to tell WCB where
are code, and where data regions:

· By default WCB uses the segment attribute to decide that the actual segment is
a code or data segment. If code, the full segment will be code region; if data,
the full segment will be data region (in the case of VxDs all the segments are

WINDOWS DISASSEMBLER

code).

· You can use the code analyzer and let WCB to discover code and data regions.
Unfortunately the code analyzer is not perfect and sometimes may mark code
regions as data (in the case of call/jmp with indirect register and memory ad-
dressing modes). If you encounter this problem, you must make a region defi-
nition file. See also option -c.

· If you want to mark an area to code or data region manually, you can do this
by making a region definition file. You can tell WCB the file name by using
the -r option. The format of the region definition file is the following: each
line in the file specifies a new region. The format of the lines is:

<type> <segment> <beginning offset> [<ending offset>]

where

<type> is the type of the region. 'C' means code region,
'D' data and 'A' autodetect. (Autodetect is a code
region with automatic length detection.)

<segment> is the segment of the
region.

<beginning offset> is the offset within the segment, where the region
starts.

<ending offset> is the offset within the segment, where the region
ends. This is not needed for type 'A' regions. In
this case (type 'A') the code analyzer will be used
to discover the length of the region.

Note that type 'A' can be used only with option -c.

Here comes an example. Suppose that you want to disassemble a library called
WHATIS.DLL. This library contains indirect jumps or calls, so the code analyzer
makes a lot of trash. You analyzed the correctly disassembled pieces of the code,
and found that a routine begins on 1.13f, 1.3ee, 1.2e2a; code must be disassembled
from 2.1003 through 2.8873 and data must be disassembled from 2.8874 to 2.88fd.
So it's time to make the region definition file like this:

The contents of WHATIS.RGD:

a 1 13f
a 1 3ee
a 1 2e2a
c 2 1003 8873
d 2 8874 88fd

After the successful creation of this file you can invoke WCB by typing:

wcb -c -r whatis

and you will get the correctly disassembled list of WHATIS.DLL.

5. The Code Analyzer
The code analyzer is used to separate code from data in a segment. In the case of
New Executables this is rarely needed, because a bit in the segment attribute speci-
fies the type of the segment. In some cases however a code segment may contain
data (and vice versa). This is the case with Linear Executables: the image of an LE
file does not contain any type of information where are code and where data re-
gions in the segment.

The code analyzer takes the entry point of the program, addresses of all the ex-
ported functions (in the case of NE files) or addresses of control procedures and all
the services that a VxD provides, and inserts these addresses into a priority queue.
The analyzer then gets an address from this queue and begins disassembling. If it
finds a ret, retf or jmp instruction then marks the previously walked area as code;
if it finds a jxx, loop, or call instruction then stores this instruction's argument into
the priority queue: if this address is in the current segment then inserts it with high
priority, otherwise with low. WCB displays the number of elements in the queue
during the analyzing process: don't get frightened if this number sometimes goes
up, this means that there were many branches in the last region. The code analyzer
currently does not process register/memory indirect jumps/calls. In the case of a
VxD, some function calls are treated as if they were call instructions (ESI contains
the address). These function calls are:

0001000b Allocate_V86_Call_Back
0001000c Allocate_PM_Call_Back
0001000d Call_When_WM_Returns
00010010 Call_Global_Event

WINDOWS DISASSEMBLER

00010011 Call_VM_Event
00010014 Call_Priority_VM_Event
00010017 Set_NMI_Handler_Addr
00010018 Hook_NMI_Event
00010019 Call_When_VM_Ints_Enabled
00010024 Call_When_Not_Critical
0001002a Call_When_Task_Switched
0001003a Call_When_Idle
0001003d Set_VM_Time_Out
00010041 Hook_V86_Int_Chain
00010071 Hook_V86_Page
0001007f Hook_V86_Fault
00010080 Hook_PM_Fault
00010081 Hook_VMM_Fault
00010090 Hook_Device_Service
00010091 Hook_Device_V86_API
00010092 Hook_Device_PM_API
00010095 Install_Mult_IO_Handlers (table address in EDI)
00010096 Install_IO_Handler
000100bf Fatal_Memory_Error (treated as a jmp)
0003000f VPICD_Call_When_HW_Int
00170004 SHELL_Message

In some cases the analyzer might do some 'trashing': it might mark code areas as
data. In these cases the user may mark explicitly these areas as code using region
definition files (this feature is discussed in the '4. Regions' section).

Don't forget to specify the -c switch on the WCB command line if you want to
use the code analyzer.

More on Passes

Here I must discuss another code analyzing facility of WCB: the multi-pass disas-
sembler. The number of passes is what you can specify with the -pn option. The
minimum is 2, the maximum is 9, and the default value is 3.

During the first pass, WCB puts the operands of all the jmp/call/jxx... instruc-
tions and addresses of all exported functions (and similarly, addresses of control
procedures and all services in the case of a VxD) into a table. This table will be
used during the later passes as a synchronizing table: the disassembler will always
begin a new instruction at an address that occurs in this table. Of course the sync

table will be updated during each pass (except the last, when WCB writes out the
list file). Here follows an example to clearly understand the previous things:

Suppose, that you have the following code (from Windows 3.1 KRNL386.EXE):
During the first pass it looks like:

 1.00CC 8ED8 mov ds, ax
 1.00CE C3 ret
 1.00CF 00558B add byte ptr [di-75], dl

 ;
 1.00D0 ; ALLOCCSTODSALIAS
 ;

 1.00D2 EC in al, dx
 1.00D3 68E100 push 00E1

This is obviously bad. But after the sync mechanism was used the code looks
much pretty:

 1.00CC 8ED8 mov ds, ax
 1.00CE C3 ret
 1.00CF 00558B add byte ptr [di-75], dl

 ;
 1.00D0 ; ALLOCCSTODSALIAS
 ;

 1.00D0 >55 push bp
 1.00D1 8BEC mov bp, sp
 1.00D3 68E100 push 00E1

You may see, that the more passes you use, the more accurate code you will get
(but I think 5 is fairly enough).

Note that you can see a '>' after each address where the sync table was used.

What about WinMain and LibMain

When you start a Windows program or Windows loads a library, Windows does

WINDOWS DISASSEMBLER

not directly transfer control to the program's or library's main function called
WinMain in the case of applications and LibMain in the case of dynamic link
libraries. There is a small piece of code, called the startup code, where the
execution begins. Then this code will call WinMain or LibMain. But which call
instruction is that calls this main function? And which is this function anyway? I
had examined Borland's and Microsoft's startup code along with many
applications' and found that:

· WinMain is the first function (far or near) that is called with five words pushed
onto the stack after a call to USER.INITAPP.

· LibMain is the first far function that the startup code calls after a call to KER-
NEL.LOCALINIT.

So WCB determines the presence and location of WinMain and LibMain these
ways.
If the program you want to disassemble doesn't contain this conventional

startup code/main procedure pair, then you may use the -nw switch to tell WCB
not to search for WinMain/LibMain, so WCB will not mark a function as a main
function incorrectly.

6. Error Messages

All available XMS handles are allocated.

You are using XMS memory extensively, so increase the number of XMS handles
in your CONFIG.SYS file with the /numhandles=n switch. In most cases the
default 32 is a pretty good number.

Autodetect type regdefs can't be used without the code
analyzer.

Your region definition file contains an autodetect type regdef but the code analyzer
is not enabled. Use the -c option or remove autodetect type regdefs from the .RGD
file.

Can't open export list filename

This message appears if WCB didn't find an export list (.EXL) file for a module
that is referenced in the executable or library you want to disassemble. To avoid
this problem, please generate an export list from the referenced module with the -x
switch.

Can't open module filename
Can't open region definition file filename
Can't open response file filename
Can't open VxD service list file filename

These errors might occur if an input file was not found. Please check that
the given filenames are correct.

Can't open listfile filename
Can't open segment list file filename

These errors might occur if an output file can't be opened because of a file system
or disk error. If you encounter any of the above error messages, please check the
given file name, that no directory with the same name exists, the output file does
not exist with read only attribute, etc.

Disk full.

You have no more free space on your disk. Please delete or compress some
files, and run WCB again.

filename does not contain symbols for module
modulename

You specified a symbol file with the -y switch, but a wrong one; that file doesn't
contain valid symbols for the current module.

WINDOWS DISASSEMBLER

DOS Version 3.0 or later required.

WCB requires MS-DOS version 3.0 or later. But who are not using DOS 5 in these
days!?

Error in region definition file.

An error occurred in the region definition file: an invalid segment number
specified, invalid regdef type specified or the given address is out of segment
boundaries. Please check the specified regdef file.

HIMEM.SYS or other XMS driver required.

WCB requires XMS memory in order to run, so please insert an XMS driver into
your CONFIG.SYS file.

Invalid switch switch.

You specified an invalid switch on the WCB command line. Please check your
command again.

filename is not a valid Windows module.

You tried to disassemble a file that is not a Windows module, that is not a NE, LE,
W3 or PE file.

Linear and Portable Executables supported in
registered version only.

This message appears if you have a non-registered version of WCB and tried to
disassemble an LE, W3 or PE file. For more about registering WCB see the
REGISTER.DOC file.

Module filename is not a W3 file.

You used the -v or -t option with a file that is not a W3 file. Please check the file-
name.

No export list for module modulename

No export list exists for an imported module. Please use WCB with the -x switch
to generate one.

No VxD name specified; use the -v switch.

You specified a file name that is a W3 file, but WCB can only disassemble the
VxDs embedded into the W3 file, so use the -v switch to select one of them.

Not enough conventional memory.

You are out of conventional memory. Please remove some TSRs from AUTO-
EXEC.BAT or use a memory manager, for example EMM386 or QEMM.

Not enough XMS memory.

You are out of XMS memory. Remove some XMS eating programs (like disk
caches), or buy more memory.

One or more of the used options available in registered
version only.

You specified an option that is available in registered version only. For more about
registering WCB see REGISTER.DOC file.

WINDOWS DISASSEMBLER

PE support under development.

The future versions of WCB will include Win32 PE support but this is currently
under development.

Stack overflow occurred, please inform the author.

This is a fatal internal error, so please report it to me.

Symbol file filename not found.

The specified symbol file not found, so check the given filename.

This program needs a 80386 or higher processor.

WCB was compiled to take advantage of the 386's 32 bit registers and addressing
modes, so you will need a 386 based machine to run WCB.

VxDname VxD not found in filename

You specified a VxD name with the -v switch, but no VxD with this name exists in
the given file.

XMS error code, please inform the author.

This is a fatal internal error, so please report it to me.

XMS Version 2.0 or later required.

You are using and old version of HIMEM.SYS. Please upgrade to a newer one.
Those shipped with MS-DOS 5 or Windows 3.1 are suitable ones.

7. Example Projects
There are three example projects included in the registered WCB package. The
first of them is a simple Windows program, the second is the disassembled list of
Windows 3.1 Task Manager and the third is the disassemblation of the debug
version Windows 3.0 Virtual Mouse Driver. You can find these examples in the
'WCB\EXAMPLES' directory.

And now some words about these examples. The first and simplest example
(which you can find in the WCB\EXAMPLES\TEST directory) is a simple Win-
dows application that only displays a window on the screen, processes
WM_PAINT messages for the window, but does nothing useful. All the source
files for the TEST application included. Along with the necessary .C, .H, .DEF
files you can find a Borland C++ project file used to build the app, and a minimal
startup code module. This was the application that I disassembled most often
during the development of WCB.

The second example is the disassemblation of Windows 3.1's Task Manager,
for which the necessary files are in the WCB\EXAMPLES\TASKMAN directory,
including the .LST and .WCB files.

The third example is more interesting than the previous ones (at least I think).
This is the disassembled list of the debug version Windows 3.0 Virtual Mouse
Driver included in Windows 3.0 DDK. This example demonstrates the use
of .SYM and .RGD files too. With examining this example you can learn about
how to disassemble VxDs, and how a VxD works; however I think you must
deeply examine the DDK documentation. Oh, I almost forgot that you can find this
example in the WCB\EXAMPLES\VMD directory.

8. Recommended Reading
Along with the SDK and DDK documentation, there's a lot of good books in the
bookstores on the subject of understanding the inner workings of the Windows
operating environment. In the end of this little manual I will mention some of
them.

· Undocumented Windows (by Andrew Schulman, David Maxey and Matt
Pietrek; Addison-Wesley ISBN 0-201-60834-0): This is a fundamental book
for everyone who likes to know what's going on under the hood of Windows. I
like especially the 3rd Chapter: Disassembling Windows, which inspired me to

WINDOWS DISASSEMBLER

write my own disassembler.

· Windows Internals (by Matt Pietrek; Addison-Wesley ISBN 0-201-62217-3):
With providing a pseudocode for the main Windows API routines, this book is
a goldmine for every programmer. Along with the pseudocode routines, the
book thoroughly explains the booting and shutting down of Windows.

· Writing Windows Device Drivers (by Daniel A. Norton; Addison-Wesley IS-
BN 0-201-57795-X): If you haven't got the DDK, this book gives you the
overview of the Windows device driver layer, and describes a lot of VxD
services.

And lastly... have a lot of fun with Windows CodeBack...

	0. Notes
	1. Overview
	What is WCB
	Hardware and Software Requirements
	Installation
	A Quick Start with WCB

	2. File Formats
	Export List File Format (.EXL)
	Output List File Format (.LST)
	VxD Service List File Format (.VSL)

	3. WCB switches
	4. Regions
	5. The Code Analyzer
	More on Passes
	What about WinMain and LibMain

	6. Error Messages
	All available XMS handles are allocated.
	Autodetect type regdefs can't be used without the code analyzer.
	Can't open export list filename
	Can't open module filename
Can't open region definition file filename Can't open response file filename
Can't open VxD service list file filename
	Can't open listfile filename
Can't open segment list file filename
	Disk full.
	filename does not contain symbols for module modulename
	DOS Version 3.0 or later required.
	Error in region definition file.
	HIMEM.SYS or other XMS driver required.
	Invalid switch switch.
	filename is not a valid Windows module.
	Linear and Portable Executables supported in registered version only.
	Module filename is not a W3 file.
	No export list for module modulename
	No VxD name specified; use the -v switch.
	Not enough conventional memory.
	Not enough XMS memory.
	One or more of the used options available in registered version only.
	PE support under development.
	Stack overflow occurred, please inform the author.
	Symbol file filename not found.
	This program needs a 80386 or higher processor.
	VxDname VxD not found in filename
	XMS error code, please inform the author.
	XMS Version 2.0 or later required.

	7. Example Projects
	8. Recommended Reading

